Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 6 de 6
Фильтр
1.
Front Physiol ; 13: 928562, 2022.
Статья в английский | MEDLINE | ID: covidwho-1990287

Реферат

In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.

2.
Biosensors (Basel) ; 12(6)2022 Jun 05.
Статья в английский | MEDLINE | ID: covidwho-1884002

Реферат

Biophysical insults that either reduce barrier function (COVID-19, smoke inhalation, aspiration, and inflammation) or increase mechanical stress (surfactant dysfunction) make the lung more susceptible to atelectrauma. We investigate the susceptibility and time-dependent disruption of barrier function associated with pulmonary atelectrauma of epithelial cells that occurs in acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). This in vitro study was performed using Electric Cell-substrate Impedance Sensing (ECIS) as a noninvasive evaluating technique for repetitive stress stimulus/response on monolayers of the human lung epithelial cell line NCI-H441. Atelectrauma was mimicked through recruitment/derecruitment (RD) of a semi-infinite air bubble to the fluid-occluded micro-channel. We show that a confluent monolayer with a high level of barrier function is nearly impervious to atelectrauma for hundreds of RD events. Nevertheless, barrier function is eventually diminished, and after a critical number of RD insults, the monolayer disintegrates exponentially. Confluent layers with lower initial barrier function are less resilient. These results indicate that the first line of defense from atelectrauma resides with intercellular binding. After disruption, the epithelial layer community protection is diminished and atelectrauma ensues. ECIS may provide a platform for identifying damaging stimuli, ventilation scenarios, or pharmaceuticals that can reduce susceptibility or enhance barrier-function recovery.


Тема - темы
COVID-19 , Pulmonary Atelectasis/etiology , Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , COVID-19/complications , COVID-19/physiopathology , Electric Impedance , Humans , Lung/physiopathology , Pneumonia, Aspiration/complications , Pneumonia, Aspiration/physiopathology , Pulmonary Atelectasis/physiopathology , Smoke Inhalation Injury/etiology , Smoke Inhalation Injury/physiopathology , Ventilator-Induced Lung Injury/complications , Ventilator-Induced Lung Injury/prevention & control
4.
Crit Care Med ; 50(4): 695-699, 2022 04 01.
Статья в английский | MEDLINE | ID: covidwho-1769409

Тема - темы
Ventilators, Mechanical , Tidal Volume
5.
Clin Drug Investig ; 41(8): 723-732, 2021 Aug.
Статья в английский | MEDLINE | ID: covidwho-1333143

Реферат

BACKGROUND AND OBJECTIVE: Low-dose acetylsalicylic acid (ASA, aspirin) is a well-known and frequently studied drug for primary and secondary prevention of disease due to its anti-inflammatory and coagulopathic effects. COVID-19 complications are attributed to the role of thrombo-inflammation. Studies regarding the use of low-dose ASA in COVID-19 are limited. For this reason, we propose that the use of low-dose ASA may have protective effects in COVID-19-related thromboembolism and lung injury. This study was conducted to assess the efficacy of low-dose ASA compared with enoxaparin, an anticoagulant, for the prevention of thrombosis and mechanical ventilation. METHODS: We conducted a retrospective cohort study on COVID-19-confirmed hospitalized patients at the Mansoura University Quarantine Hospital, outpatients, and home-isolated patients from September to December 2020 in Mansoura governorate, Egypt. Binary logistic regression analysis was used to assess the effect of ASA compared with enoxaparin on thromboembolism, and mechanical ventilation needs. RESULTS: This study included 225 COVID-19 patients. Use of ASA-only (81-162 mg orally daily) was significantly associated with reduced thromboembolism (OR 0.163, p = 0.020), but both low-dose ASA and enoxaparin, and enoxaparin-only (0.5 mg/kg subcutaneously (SC) daily as prophylactic dose or 1 mg/kg SC every 12 hours as therapeutic dose) were more protective (odds ratio [OR] 0.010, OR 0.071, respectively, p < 0.001). Neither ASA-only nor enoxaparin-only were associated with a reduction in mechanical ventilation needs. Concomitant use of low-dose ASA and enoxaparin was associated with reduced mechanical ventilation (OR 0.032, 95% CI 0.004-0.226, p = 0.001). CONCLUSIONS: Low-dose ASA-only use may reduce the incidence of COVID-19-associated thromboembolism, but the reduction may be less than that of enoxaparin-only, and both ASA and enoxaparin. Concomitant use of ASA and enoxaparin demonstrates promising results with regard to the reduction of thrombotic events, and mechanical ventilation needs.


Тема - темы
COVID-19 , Thrombosis , Anticoagulants/therapeutic use , Aspirin , Enoxaparin/therapeutic use , Humans , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Thrombosis/prevention & control
6.
Fam Med Community Health ; 9(2)2021 04.
Статья в английский | MEDLINE | ID: covidwho-1195851

Реферат

OBJECTIVES: To review the pathophysiology of COVID-19 disease, potential aspirin targets on this pathogenesis and the potential role of aspirin in patients with COVID-19. DESIGN: Narrative review. SETTING: The online databases PubMed, OVID Medline and Cochrane Library were searched using relevant headlines from 1 January 2016 to 1 January 2021. International guidelines from relevant societies, journals and forums were also assessed for relevance. PARTICIPANTS: Not applicable. RESULTS: A review of the selected literature revealed that clinical deterioration in COVID-19 is attributed to the interplay between endothelial dysfunction, coagulopathy and dysregulated inflammation. Aspirin has anti-inflammatory effects, antiplatelet aggregation, anticoagulant properties as well as pleiotropic effects on endothelial function. During the COVID-19 pandemic, low-dose aspirin is used effectively in secondary prevention of atherosclerotic cardiovascular disease, prevention of venous thromboembolism after total hip or knee replacement, prevention of pre-eclampsia and postdischarge treatment for multisystem inflammatory syndrome in children. Prehospital low-dose aspirin therapy may reduce the risk of intensive care unit admission and mechanical ventilation in hospitalised patients with COVID-19, whereas aspirin association with mortality is still debatable. CONCLUSION: The authors recommend a low-dose aspirin regimen for primary prevention of arterial thromboembolism in patients aged 40-70 years who are at high atherosclerotic cardiovascular disease risk, or an intermediate risk with a risk-enhancer and have a low risk of bleeding. Aspirin's protective roles in COVID-19 associated with acute lung injury, vascular thrombosis without previous cardiovascular disease and mortality need further randomised controlled trials to establish causal conclusions.


Тема - темы
Anti-Inflammatory Agents, Non-Steroidal , Aspirin , COVID-19 , Thromboembolism , Adult , Aged , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Aspirin/administration & dosage , Aspirin/adverse effects , Aspirin/therapeutic use , COVID-19/complications , COVID-19/physiopathology , COVID-19/therapy , Humans , Inflammation , Middle Aged , Practice Guidelines as Topic , Thromboembolism/drug therapy , Thromboembolism/etiology , Thromboembolism/prevention & control
Критерии поиска